Compte rendu Architecture Matérielle

Objectif :

Le TP d'introduction aux architectures ARM-x86-x64 a pour objectif d'explorer les aspects
principaux des basses couches des logiciels, fortement contraintes par l'architecture matérielle. Les
trois architectures ciblées sont ARM, x86 et x64, représentatives de deux tendances historiques :
RISC et CISC. Le TP se concentrera sur la maniere dont le compilateur C organise les appels de
fonctions et le stockage des données, ainsi que sur certains aspects de la sécurité qui en dépendent.
Pour cela, la stratégie adoptée sera I'observation du fonctionnement du programme "en live" au
moyen d'un debugger, ce qui suppose une bonne compréhension du langage d'assemblage.

Préparation :

Téléchargement des ressources : tp-3a-fisa-arm-x86-x64-ressources.tar
Téléchargement du compilateur : gcc-arm-none-eabi-9-2019-q4-major-x86_64-linux
Extraction du compilateur Cortex-M: make gcc-arm

Prise en main :

emu
Affichez les machines supportées par gemu : gemu-system-arm -M help = Im3s6965evb
Stellaris LM3S6965EVB

Compiler les fichiers: gemu-system-arm -M Im3s811evb -nographic -no-reboot -
kernel arm.bin -s -S

Gdb
Ouverture de gdb: ./arm-gdb OU gdb
Lire les symboles du fichier source : file arm.elf OU file x86.bin
Connexion manuelle a gemu : target remote localhost:1234

Script pour tout lancer (ARM) : ./setup-arm-gdb-gemu.sh

Commandes:
- Découpage fenétre en 3 : layout split
- Brakpoint : break [Nom_fichier]:ligne ou break [Nom_fichier]:function
- Exécute le code : continue
- Lancer le programme : run
- Avance I’execution : step
- Etat des registres : info registers
- Supprimer breakpoint : delete [nb_BP]
- Afficher la valeur d’un registre : print ${nom du registre]
- Sélectionner le code : focus src
- Sélectionner la commande : focus cmd
- Sélectionner I’assembleur : focus asm
- Quitter la vue 3 fenétre : ctrl-x+a

EXPO01: variables locales

Question 1

Pour les 3 architectures proposées, étudiez o sont stockées les variables locales aa, bh, cc, dd, ee
de la fonction sub(1.

Question 2

Etudiez de plus comment Iespace de stockage pour ces variables est réservé et comment il est
libéré.

Architecture x86 :

(gdb) print &aa Les variables locales aa, bb, cc, dd, ee de la fonction sub01 sont stockés
LRt dans la pile de la mémoire vive.

En architecture x86, 1’adresse de la pile commence a la fin de la plage
d’adresse allouée pour les données.

(int *)
(gdb) print &dd

= (nt &)

La plage d’adresse débute a OXFFFFFFFF

Breakpoint 1, subol () 2 18 Dans I’architecture x86_64 la pile est également située a la fin
(950 g Ao de la plage d’adresse allouée.

(gdb].print &
52 = (int *) De plus, la pile grandit et vas vers des adresses plus basses lors

i‘ijlf} (.E;i”f.}&bb de I’ajout de nouvelles données.

(gdb) print &cc
54 = (int *) La fonction sub01 est stockée dans 1’espace d’adressage du

f;g'jb) ‘.E;t”f.}"‘"dd processus qui exécute le programme.
Sa =l i

(gdb) print &ee
56 = (int *) La plage de la pile va de 0x7FFFFFFFFFFF a 0x7FFF00000000

ARM Cortex-M3 :

, Les variables sont stockées dans la pile, soit dans 1’espace

(qdb) print &bb d’adresse RAM allant de 0x2000 0000 a Ox3FFFFFFF.

$9 = (int *)

(gdb) print &cc La fonction sub01 est chargé a 1’adresse 0x4d4 ce qui correspond

S ;::E t*z-j- q a la ROM qui a une plage d’adresse de 0x0 a Ox1FFFFFFF.

(int
(gdb) print Zee
SlZE=NinE 5}

L’espace de stockage pour les variables locales est réservé sur la pile a des emplacements
consécutifs. Pendant l'exécution de la fonction, les variables peuvent étre lues et modifiées en
utilisant des adresses relatives a 'adresse de base de la pile.

Lorsque la fonction se termine, I'espace alloué pour les variables locales est libéré.

Question 3

En quoi le stockage des variables locales a-t-il été amélioré 7

L’optimisation make CFLAGS=-01 :
- Utilisation des registres pour stocker les variables locales =» plus rapide pour accéder a
la mémoire
- Empilement de plusieurs variables dans un seul espace mémoire =» améliorer la rapidité
- Réorganiser les variables locales pour minimiser les accés mémoires =» améliorer les
performances

L’optimisation 1 permet au compilateur de sauter certaines instructions qui n’ont pas d’impact
majeur sur le code et notamment sur la sortie.

Ainsi, toutes les variables non utilisées ne sont pas stockées dans la mémoire pour éviter
d’encombrer de 1’espace de stockage inutilement.

Typiquement dans notre programme, les variables aa, bb, cc et dd ne sont pas stockées car elles
n’ont aucun impact sur 1’activité du code, a I’inverse de ee qui est projetée sur un périphérique avec
expose en sortie.

EXPO02: arguments d’une fonction

Question 4

Comment la fonction seed() retourne-t-elle sa valeur 7

endbr32

2d+4> push %
+5> mowv
=+ 7> call

2d+12> add

1+17=> mowv
+20> add
ed+23> pop
ed+24= ret
86.get pc tf 3% > mowv

G get_pcCc_T ret
La fonction seed() retourne sa valeur en la placant dans le register EAX (mov 0x8(%ebp),%eax).

endbr 32 : Sécurise 1’exécution contre les attaques de débordements de tampon.
push %ebp : Sauvegarde de la valuer du registre ebp sur la pile.

mov %esp,%ebp : Copie la valeur du registre esp dans le registre ebp

add $0x2dca,%eax : Ajour de I’offset 0x2dca a la valeur stocké dans le registre eax

mov 0x8(%ebp),%eax : Copie la valeur de I'argument i dans le registre eax
add $0x1,%eax : Ajoute 1 a la valeur stockée dans le registre eax

pop %ebp : Restaure la valeur du registre ebp a partir de la pile.

ret : Retourne a l'instruction appelante

Question 5

Comment les arguments aa, bb, ce, dd, ee sont-ils passés a la fonction sub01() 7

La fonction sub01 utilise le registre eax qui contient la valeur de nos variables (voir fonction seed
précédente) et le pointeur de base de la pile ebp. En effectuant un décalage en hexadécimal par
rapport a cette référence, on stocke la valeur finale de nos variables (en sortie de sub01) aprés avoir
effectué les opérations d’addition et de multiplication correspondant au code.

Question 6

En quoi l'appel i la fonction sub01() a-t-il été amélioré 7

L’optimisation make CFLAGS=-02 :
- Utilisation des registres pour stocker les variables
- Variables les plus fréquemment utilisées stocké dans la mémoire cache.
- Vectorisation pour réaliser plusieurs taches a la fois

Avec cette nouvelle optimisation, la fonction seed() est remplacée par de 1’arithmétique pure et
I’exécution de la fonction sub01 est beaucoup plus rapide. Les étapes d’addition et multiplication
des registres ne sont méme plus effectués par le compilateur.

EXPO03: débordement de pile

Question 7

Vérifiez pour chaque architecture si la valeur soumise a expose() est bien la valeur prévue pour
le dernier élément.

ARM:

La fonction expose fait un printf de I’argument placé en argument.
Sur I’ARM, la valeur du dernier élément du tableau est bien 37068. Cette observation signifie qu’il
n’y a pas présence d’un mécanisme de protection d’intégrité de la pile dans ce processeur.

TP1/EXPO3$ gemu-system-arm -M lm3s81levb -nographic

-no-reboot ernel arm.bin -s -S
37068=0x000090cC

x86 et x86-64 :

Chanfreau - Marcé

En revanche, pour les architecture x86 et x86_64 1’exécution du programme retourne une erreur.
Cela signifie qu’il y a présence d’un mécanisme de protection de I’intégrité de la pile dans ces
processeurs. Cette configuration permet de gérer les débordements de pile.

./x86.bin

tected ***: terminated

S ./x86 64.bin
terminated

On observe tout de méme que la derniere valeur du tableau correspondant bien a celle attendue
grace a un print effectué juste avant interruption du programme.

(gdb) print i
54 = 37068

(gdb) print &i
5 = (int *)

Question 8

Pour chaque architecture, étudiez si le déroulement du programme est correct. Sinon, & partir de

3

quelle instruetion v a-t-il une déviation 7

Question 9

Quelle est la cause de 'incident 7

ARM :

Apres I’exécution du programme, celui-ci ne se termine pas et continue I’exécution d’une boucle
infinie.

movs
movs
MmovVs

{(gdb) continue

Continuing.
movs
movs
MoV s

En étudiant le code d’assemblage, nous nous apercevons que la zone mémoire allouée dans la pile
pour le tableau a été dépassée par I’écriture de nos valeurs. Ainsi, nous avons malencontreusement
écrasé une partie de la pile contenant potentiellement des informations importantes telles que
’adresse de retour de la fonction. La ligne suivante en surbrillance montre que la partie suivante du
code exécuté se trouve a une adresse dont nous avons écrasé la valeur. La conséquence est que le
code effectue un saut a I’adresse 0x941d correspondant a une partie de la ROM «vide » (composée
de 0 uniquement) et qui s’exécute indéfiniment.

Chanfreau - Marcé

@x338 <sub®1+20=> Ox32C <subB1+8=>
Bx33a <subf1+22> re,

sp, #4
0x33c =<sub®1+24-> @x308 <sub®2>
0x340 <sub®1+2 sp, #44 ; Ox2c
<subB1+30>
<main> push] (gdb i X *0x20000FF4

3 <main+2= mov.w ro@, #4096 ; Oxle600

x86 :

Pour le processeur x86, le programme se termine par un saut dans le gestionnaire d’erreur
(__stack_chk_fail), ce qui a pour conséquence de terminer I’exécution. Plus précisément, 1’erreur
est due a une tentative de lecture dans une zone non prévue a cet effet (extérieure au tableau dans
notre cas d’étude).

L’erreur se produit a partir de la ligne xor %gs : 0x14,%ecx qui nous renvoie par la suite a 1’adresse
0x5655628d (call : gestionnaire d’erreur).

(gdb) run
Starting program: ome fchanfreau/INSAfArchitecture mat rielle/TP1/EXPO3/x86.bin
*** stack smashing detected ***: terminated

Program received signal SIGABRT, Aborted.
(gdb) in _ _kernel_: ()

endbr32

X86_64 :

Pour le processeur x86_64, le programme se termine également par un saut dans la gestionnaire
d’erreur (__stack_chk_fail) et provoque la fin de son exécution. L’erreur est due au méme
débordement mémoire que pour le x86.

L’erreur se produit a partir de la ligne xor %fs : 0x28,%rcx qui nous renvoie a I’adresse
0x55555555551ff (call : gestionnaire d’erreur).

() at

stack chk fail.c: Aucun fichier ou dossi

Chanfreau - Marcé

jne
mowv

B0x5555555551fF 0X555555555060 <

En conclusion:

L'incident est causé par une optimisation incorrecte du compilateur. Lorsque le compilateur
optimise le code, il effectue des modifications pour accélérer 1'exécution, mais cela peut parfois
entrainer des erreurs si ces modifications sont incorrectes.

Dans ce cas, 1'optimisation a entrainé un acces incorrect a la mémoire en essayant d'accéder a des
éléments au-dela de la limite du tableau. Cela a conduit a des résultats incorrects et a un
comportement imprévisible du programme.

